
[RL] 강화학습 REINFORCE 알고리즘
·
ML & DL/RL
혁펜하임님의 "혁펜하임의 “트이는” 강화 학습" 을 바탕으로 기록한 내용입니다. policy gradient을 식을 쭉 따라왔다면 REINFORCE 알고리즘을 이해하는 데에 큰 어려움은 없었다. Gt를 이용해서 update를 진행하기 때문에 한 에피소드가 끝나야 업데이트가 가능하다는 특징이 있고, 이에 따라 unbiased하지만 variance가 커서 수렴하는데 시간이 오래 걸린다는 것이 핵심이다. policy gradient에서 식 전개 과정이 궁금하시다면 아래 링크에서 정리된 내용을 확인하실 수 있습니다 :)강화학습 Policy Gradient 수식 전개 (tistory.com) 강화학습 Policy Gradient 수식 전개혁펜하임님의 "혁펜하임의 “트이는” 강화 학습" 을 바탕으로 기록한 내..